On some flat connection associated with locally symmetric surface
View/ Open
Author:
Robaszewska, Maria
xmlui.dri2xhtml.METS-1.0.item-citation: Annales Universitatis Paedagogicae Cracoviensis. 149, Studia Mathematica 13 (2014), s. [19]-43
xmlui.dri2xhtml.METS-1.0.item-iso: en
Date: 2014
Metadata
Show full item recordDescription:
Dokument cyfrowy wytworzony, opracowany, opublikowany oraz finansowany w ramach programu "Społeczna Odpowiedzialność Nauki" - modułu "Wsparcie dla bibliotek naukowych" przez Ministerstwo Nauki i Szkolnictwa Wyższego w projekcie nr rej. SONB/SP/465103/2020 pt. "Organizacja kolekcji czasopism naukowych w Repozytorium UP wraz z wykonaniem rekordów analitycznych".Abstract
For every two-dimensional manifold $M$ with locally symmetric
linear connection $∇$, endowed also with $∇-parallel$ volume element, we construct
a flat connection on some principal fibre bundle $P(M,G)$. Associated
with – satisfying some particular conditions – local basis of TM local connection
form of such a connection is an $R(G)$-valued 1-form $Ω$ build from the
dual basis $ω^1$, $ω^2$ and from the local connection form ω of $∇$. The structural
equations of $(M,∇)$ are equivalent to the condition $dΩ − Ω ˄ Ω = 0$.
This work was intended as an attempt to describe in a unified way the
construction of similar 1-forms known for constant Gauss curvature surfaces,
in particular of that given by $R$. Sasaki for pseudospherical surfaces.