dc.contributor.author | Górowski, Jan | pl |
dc.contributor.author | Łomnicki, Adam | pl |
dc.date.accessioned | 2023-09-01T07:58:52Z | |
dc.date.available | 2023-09-01T07:58:52Z | |
dc.date.issued | 2010 | |
dc.identifier.citation | Annales Universitatis Paedagogicae Cracoviensis. 82, Studia ad Didacticam Mathematicae Pertinentia 3 (2010), s. [49]-54 | pl |
dc.identifier.uri | http://hdl.handle.net/11716/12366 | |
dc.description.abstract | In this paper we give the necessary and sufficient conditions for the number of the form $d = k.2^7 + 1$ and $d =
k.2^8 + 1$ to be divisors of the Fermat numbers $F_5$ and $F_6$, respectively. Moreover, we present numerous elementary
proofs of the complexity of the numbers $F_5$ and $F_6$. | en |
dc.language.iso | pl | pl |
dc.title | Kilka uwag na temat liczb Fermata $F_5$ i $F_6$ | pl |
dc.title.alternative | Some comments on the Fermat numbers $F_5$ and $F_6$ | en |
dc.type | Article | pl |