Show simple item record

dc.contributor.authorBłaszczyk, Piotrpl
dc.date.accessioned2024-05-22T09:08:09Z
dc.date.available2024-05-22T09:08:09Z
dc.date.issued2012
dc.identifier.citationAnnales Universitatis Paedagogicae Cracoviensis. 110, Studia ad Didacticam Mathematicae Pertinentia 4 (2012), s. [15]-30pl
dc.identifier.urihttp://hdl.handle.net/11716/13209
dc.description.abstractIn this paper, we present some basic facts concerning ordered fields. We review definitions of an ordered field, give an example of a field that admits many orderings, and present equivalent definitions of the axiom of Archimedes and the continuity axiom. Ew show how to extend an ordered field by means of an ultrapower construction and formal power series.en
dc.languageplpl
dc.language.isoplpl
dc.subjectordered fieldsen
dc.subjectArchimedean fielden
dc.subjectnon-Archimedean fielden
dc.subjectcontinuityen
dc.subjecthyperrealsen
dc.titleO ciałach uporządkowanychpl
dc.title.alternativeOn ordered fieldsen
dc.typeArticlepl


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record