dc.contributor.author | Błaszczyk, Piotr | pl |
dc.date.accessioned | 2024-05-22T09:08:09Z | |
dc.date.available | 2024-05-22T09:08:09Z | |
dc.date.issued | 2012 | |
dc.identifier.citation | Annales Universitatis Paedagogicae Cracoviensis. 110, Studia ad Didacticam Mathematicae Pertinentia 4 (2012), s. [15]-30 | pl |
dc.identifier.uri | http://hdl.handle.net/11716/13209 | |
dc.description.abstract | In this paper, we present some basic facts concerning ordered fields. We review definitions of an ordered field,
give an example of a field that admits many orderings, and present equivalent definitions of the axiom of
Archimedes and the continuity axiom. Ew show how to extend an ordered field by means of an ultrapower construction
and formal power series. | en |
dc.language | pl | pl |
dc.language.iso | pl | pl |
dc.subject | ordered fields | en |
dc.subject | Archimedean field | en |
dc.subject | non-Archimedean field | en |
dc.subject | continuity | en |
dc.subject | hyperreals | en |
dc.title | O ciałach uporządkowanych | pl |
dc.title.alternative | On ordered fields | en |
dc.type | Article | pl |